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Abstract-This study deals with the temperature distribution in a visco-elastic fluid of Walters’ liquid B 
model over a horizontal stretching plate. The velocity of the plate is proportional to the distance from the 
slit and the plate is subject to variable heat flux. The results are expressed in terms of Kummer’s functions. 
Several closed-form solutions for specified conditions are presented. The effect of the visco-elastic parameter 
Ko* and the heat flux parameter s on the temperature field is also studied. In addition, the solutions of a 
linearly stretching plate in a Newtonian flow with variable surface heat flux are also obtained. When 

Ko* = 0 and s = 0, the solutions reduce to the published results. 

INTRODUCTION 

BOUNDARY-LAYER behaviour on a moving continuous 
solid surface is an important type of flow occurring in 
a number of engineering processes. An example of 
a moving continuous surface is a polymer sheet or 
filament extruded continuously from a die, or a long 
thread travelling between a feed roll and a wind-up 
roll. 

Flow in the boundary layer on a continuous solid 
surface with constant speed was studied by Sakiadis 
[l]. Due to entrainment of ambient fluid, this situation 
represents a different class of boundary layer problem 
which has a solution substantially different from that 
of boundary layer flow over a semi-infinite flat plate. 
Erickson et al. [2] extended this problem to the case 
in which suction or blowing existed at the moving 
surface. Since polyester is a flexible material, the fila- 
ment surface may stretch during the course of ejection 
and therefore the surface velocity deviates from being 
uniform. Crane [3] considered a moving strip the vel- 
ocity of which is proportional to the distance from the 
slit. These types of flow usually occur in the drawing of 
plastic films and artificial fibres. The heat and mass 
transfer on a stretching sheet with suction or blowing 
was investigated by Gupta and Gupta [4]. They dealt 
with the isothermal moving plate and obtained the 
temperature and concentration distributions. Dutta 
et al. [5] analysed the temperature distribution in the 
flow over a stretching sheet with uniform heat flux. It 
is shown that the temperature at a point decreases 
with an increase in the Prandtl number. 

More recently Siddappa and Abel [6] studied the 
non-Newtonian flow past a stretching plate and 
obtained the solution of the equation of motion. 
Grubka and Bobba [7] considered the heat transfer 
occurring on a continuous, linearly stretched surface 
with a power law surface temperature. In the present 
investigation, the heat transfer in a visco-elastic fluid 

of Walters’ liquid B model over a stretching plate 
subject to power law flux has been studied. A series 
solution to the energy equation in terms of Kummer’s 
functions is obtained. Several closed-form analytical 
solutions are also presented for special conditions. 

In many practical fluids such as plastic films and 
artificial fibres, the hypothesis of a Newtonian fluid 
is obviously unsuitable. Therefore, the problem of 
determining the temperature field in a non-Newtonian 
fluid over a stretching surface does not seem to have 
received any attention. The present study is addressed 
to this problem. 

ANALYSIS 

Consider a steady visco-elastic two-dimensional 
flow past a horizontal stretching plate that issues from 
a thin slit at x = 0, y = 0, as in a polymer processing 
application (Fig. 1). It is assumed that the speed of a 
point on the plate is proportional to its distance from 
the slit, the boundary layer approximations are still 
applicable, and viscous dissipation is neglected in the 
energy equation. 

The steady-state boundary layer equation govern- 
ing the flow of visco-elastic fluid (Walters’ liquid B) 
[6] is 

.a” +vau = vdzu _&* a3u a’24 
ax ay ay* 1 uaxdy2+vp 

the continuity equation is 

au+!!=0 
an ay 

and the energy equation is 

(2) 
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NOMENCLATURE 

f similarity solution of equations (1) and (2) q similarity variable 

9 similar dimensionless temperature e dimensionless temperature 
function kinematic viscosity of fluid 

k thermal conductivity ; stream function. 

Ko* visco-elastic parameter 
P dimensionless parameter in equation (16) 
Pr Prandtl number Superscript 

4 surface heat flux derivative with respect to q. 

s heat flux parameter 
T temperature 
u, u velocity component in x, Y direction. Subscripts 

Y derivative with respect toy 

Greek symbols W stretching plate conditions 

c( thermal diffusivity co ambient conditions. 

and the similarity variable u depends on y only. Using 
equations (5) and (6), the velocity components 

FIG. I. Boundary layer on a stretching plate. 

where a prime denotes differentiation with respect to 
q. We can set f(0) = 0 in equation (7) without loss of 
generality so that 

ar aT a=T v = - (m/r)f (4. (8) 
24% +vay = may (3) 

Putting these values of u and v in equation (1) it 

where (x, y) are the coordinates, (u, v) the velocity becomes 

components in these directions, and Ko* the visco- 
elastic parameter. The relevant boundary conditions 

(f’)=-ff” = (vr*/m)f”-Ko*r*{2f’f”’ 

are -ffiv-(f”)‘> (9) 

which is subject to the boundary conditions 
u=mx, v = 0, -kg=q,=Ax’ fory=O 

aY f’(0) = 1 forq = 0 

u = 0, v= -c, uy=o, T= T, asy+co 
(4) f’(ua)=O, f”(co)=O, C=Ff(w) as? -+ co. 

where m and A are given constants, C is a positive (10) 

constant to be determined and subscript y denotes 
differentiation with respect to y. 

In order to satisfy the above boundary conditions, 

Since the fluid is incompressible, the momentum 
Siddappa and Abel [6] have suggested to try a solution 
ofthe form 

equation (1) and energy equation (3) can be solved 
consecutively. The solution to the momentum equa- f’(q) = e0, f(q) = 1 -e-“. (11) 

tion will be considered first. A stream function IJ 
defined by 

Then equation (9) becomes 

r =J((v/m!Ko*)) 
I (12) 

is introduced such that the continuity equation is hence the solution of equation (1) is obtained as 

identically satisfied. 
A dimensionless stream function is given by u = mxe0, v = -:(1-e-“). (13) 

ti = (mx/r)f (4), r? = ry. (6) To solve the energy equation (3), the temperature 
Here r is a positive constant to be determined from distribution can be taken in the form of a similar 
equation (l), f is the dimensionless stream function solution as 
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T- T, = $ g(q). 

By substituting equations (13) and (14) into equation 
(3), one obtains 

g”+P(l-e-V)g’-Pse-“g = 0 (15) 

where P is the modified Prandtl number in the visco- 
elastic fluid expressed as 

P = (v/cz - m Ko*/ci). (16) 

It should be noted that the dimensionless parameter 
P relates the relative magnitudes of diffusion of 
momentum and heat in the visco-elastic fluid. For 
a Newtonian fluid, i.e. Ko* = 0, P in equation (16) 
reduces to Pr. The boundary conditions for g are 
derived from equations (4) and (14) as 

g’(0) = -1, g(co) = 0. (17) 

Introducing a new variable 5 = -P e-‘J and sub- 
stituting the solution for f into equation (15) gives 

$+(l-P-@+sg=o 
dt 

(18) 

with the boundary conditions 

dg(5 = -P) 
dt 

= -l/P, g(5 = 0) = 0. (19) 

The solution of equation (18) satisfying equation 
(19) in terms of Kummer’s functions [8] is 

g(5) = J _ 5 MP-s, Pf l,<) 
( J P P M(P-s, P, P) 

where 

a, = a(u+ 1) (a+2), . . . ( (u+n- 1) 

b, =b(b+l)(b+2),...,(b+n-I). 

Rewriting equation (20) in terms of rl 

M(P-s, P+ 1, -Pe-*) 

M(P-s, P, -P) 

(20) 

(21) 

(22) 

The wall temperature T, is obtained from equation 

(14) as 

T,-T, = $g(O) 

where 

1 M(P-s,P+l, -P) 
g(0) = - P M(P-s, P, -P) (24) 

It is worth pointing out that the dimensionless tem- 

perature distribution 0 = (T- T,J/( T, - T,) is equal 
to the ratio of g(q) to g(0). Several closed-form solu- 
tions are developed from equations (22) and (24) for 
specific values of s and P. Four such cases are reported 
in Table 1. 

RESULTS AND DISCUSSION 

Equations (22) and (24) were evaluated to deter- 
mine the temperature field and the surface tem- 
perature as a function of P and s. It should be noted 
that the solutions of a continuous, stretching surface 
in a Newtonian fluid with variable surface heat flux 

are 

For a uniform heat flux in a Newtonian fluid, i.e. 
s = 0, equation (25) reduces to that reported by Dutta 
et al. [S]. 

As the numerical value of the fluid visco-elastic 

parameter Ko* decreases, the dimensionless par- 
ameter P increases. Temperature fields were obtained 
for P = 0.3,0.5, 1, 3, and 5 with s ranging between -2 
and 2. The effect of the heat flux parameter s on 0 is 
illustrated in Fig. 2 for P = 0.7. Figure 2 shows that 
the wall temperature gradient is negative for s = 0, 
1, and 2. This implies that the heat flows from the 
continuous surface to the ambient. The magnitude of 
the temperature gradient increases with increasing s. 
When s = -2, the sign of the temperature gradient 
changes but the value of g(0) is negative ; and hence 
the heat flux at the surface flows into the fluid. It can 

Table 1. Dimensionless temperature and wall temperature expressions for 
various P and S 

s P L9 g(O) 

P s (eePv)/P l/P 

0 1 e,,-cxF(~c-~I) e-l 

0 P ePPmPy(P, Pee*) ep P-‘y(P, P)t 

-2 P -i(l+P-Pemn)exp(P(l-q-e-“)) -I/P 

t y incomplete Gamma function. 
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FIG. 2. Dimensionless temperature field for various f at 
P = 0.7. 
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FOG. 3. Dimensionless temperature field for various P at 
s= 1. 

P 

Fro. 4. Dimensionless surface tem~ratur~ for various s. 

be seen in Fig. 2 that a zero temperature gradient 
occurs at s = -2, where a minimum temperature 
exists in the thermal boundary layer. Therefore, the 
heat flows into the thermal boundary Iayer from both 
the ambient free stream and the stretching plate. 

The dimensionless tem~rature field @ vs q For vari- 
ous P at s = 1 are plotted in Fig. 3. It is shown that 
the temperature at a point decreases with decreases in 
the &co-elastic parameter Ko*. For a given s value, 
the larger the P, the smaller the thermal boundary 
layer thickness. The dimensionless surface tempera- 
ture, g(O), variation with P is given in Fig. 4. The 
surface temperature decreases rapidly as P increases 
from 0 to 1 and then slowly decreases with increases 
in P. Figure 4 also shows that the larger the heat fhrx 
parameter s, the smaller the surface temperature. 

In this study, the heat transfer in a visco-elastic fluid 
af Walters’ liquid B mode1 over a linearly horizontal 
stretching plate with a power law heat flux has been 
sotved in terms of Kummer’s functions. Several 
closed-form solutions for specified conditions are 
presented. 

The thermal boundary layer thickness decreases 
with a decrease in the visco-elastic parameter, Ko*, 
i.e. an increase in the modified Prandtl number, P. 
Varying the heat flux parameter s affects the mech- 
anism of heat transfer. The temperature field in the 
Newtonian fluid over a stretching plate with variable 
heat Aux is also included in this work. When P = Pr, 

s = 0, the solutions reduce to the published results [S]. 
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CHAMP DE TEMPERATURE DANS UN ECOULEMENT NON-NEWTONIEN SUR UNE 
PLAQUE AVEC UN FLUX DE CHALEUR VARIABLE 

R&rrn&Cette etude concerne ia distribution de temperature dam un fluide v~sco-~lastique selon le modele 
liquide B de Walter sur une plaque harizontale. La vitesse de la plaque est proportionnelle I la distance 
de la fente et la plaque est soumise I un flux variable. Les resultats sont exprimes en fonction des variabies 
de Kummer. Quelques solutions analytiques pour des conditions specifiques sont present&es. On ttudie 
aussi l’effet du parametre visco-elastique Ko* et des parametres de flux thermique sur le champ de 
temperature. De plus, les solutions sont obtenues pour une plaque dans un Ccoulement newtonien, avec 
un flux parietal thermique variable. Lorsque Ko* = 0 et s = 0, les sohttions se reduisent aux resultats deji 

publies. 
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TEMPERATURFELD IN EINER NICHT-NEWTONSCHEN STROMUNG UBER EINE 
AUSGEDEHNTE PLATTE BE1 VERSCHIEDENEN WARMESTROMDICHTEN 

Zusamrnenfassung-Diese Studie beschlftigt sich mit der Temperaturverteilung in einem viskoelastischen 
Fluid (Fliissigkeitsmodell B nach Walter) iiber eine horizontal ausgedehnte Platte. Die Geschwindigkeit 
der Platte ist proportional zur Entfernung vom Spalt; der Platte werden verschiedene Wlrmestriime 
aufgepriigt. Die Ergebnisse sind in Form von Kummer-Funktionen ausgedriickt. Fur spezielle Bedingungen 
werden verschiedene geschlossene Lijsungen angeboten. Die Auswirkung des viskoelastischen Parameters 
Ko* und des WIrmestromparameters s auf das Temperaturfeld werden ebenso untersucht. Zusltzlich erhalt 
man die Lijsungen fiir eine linear ausgedehnte Platte in einer newtonschen Striimung mit verschiedenen 
Oberfl&chenwlrmestriimen. Ftir Ko* = 0 und s = 0 fiihren die obigen Lijsungen auf die bekannten 

Ergebnisse. 

TEMHEPATYPHOE I-IOJIE HPH OETEKAHMH HEHLIGTOHOBCKOH XHAKOCTLIO 
IIJIACTMHbI, HAFPEBAEMOH HEPEMEHHbIM TEIIJIOBbIM HOTOKOM 

Armoraunn-Hccnenyecrt rehmeparypnoe none B ansroynpyroii ~trnrtocrn Banrepca (B) noxpyr ropa- 
30HTaJlbHOii +OpMyeMOii IlJlaCTHHbL CKOpOCTb IlJIaCTUHbI npOnOplulOHaJlbHa paCCTOKHHKI OT LUeJlH. 

Hnacrrina riarpeeaercn nepeMermbrh4 Tennoribw n0T0K0~. Pe3ynbrarbr npencrasneribr B BHne I$YHKI&~ 

KyMMepa &WI KOHKpeTHbIX yCJlOB& &XiBeJIeHbl HeCKOJlbKO pellIeHHii B 3aMKHyTOii +OpMe H H3yYeHO 
raxxte BnwHHe Ha rehmeparyptroe none napabfeqa en3Koynpyrocrs Ko* H napaMeTpa TennoBoro 

nOTOKa s.KpOMe TOrO,nOJIyYeHbI PWJeHHK JJJIll nJlaCTUHbl,nB&i;ltylueiiCff n0 JlUHei%HOMy 3BKOHY B Hb,O- 
TOHOB~KO~~ ~(BLIKOCTH npn neper+rennohr rennonohr noroxe na noeepxaocra. Hpn Ko* = 0 H s = 0 


